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Axial symmetric flow model for a flat bottom hydrocyclone
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Abstract

Experiments with laser Doppler velocimetry show that, for flat bottom hydrocyclones, the axial velocity field is a function of the radius
and a linear function of the axial co-ordinate, while the tangential velocity is a function of the radial co-ordinate only. Based on these
results, a physical model is presented, where the flow field is divided in two zones. Zone I corresponds to the feed inlet, which occurs
through a ring in the upper portion of the cylinder, the length of which depends on the length of the vortex finder tube. Zone II includes the
rest of the cylinder. The axial symmetric solution of Reynolds equations for the isotropic turbulent flow leads to two sets of field equations,
one for each zone in the hydrocyclone. In zone II, where experimental data were determined, simulation compares favourably with the flow
pattern determined experimentally for water in a 100-mm flat bottom hydrocyclone. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is interesting to notice that while, conical hydrocyclones
are the most widely used classification equipment in the min-
eral industries, cylindrical hydrocyclones, more often called
flat bottom hydrocyclones, were the first to be mathemat-
ically modelled. The reason for this is that the cylindrical
geometry is more amenable to mathematical treatment than
the cylindro-conical combination. Rietema and co-workers
[1–3] modelled the hydrocyclone as a cylindrical device us-
ing cylindrical co-ordinates. Assuming axial symmetry, they
considered that the feed entered the equipment through the
entire cylindrical mantel with an independent combination
of a radial velocity componentVR and tangential velocity
componentVθR (see Fig. 1). Since the only experimental
information available on the velocity distribution in a hydro-
cyclone was that of Kelsall [4] for a conical hydrocyclone,
Rietema and co-workers, based their work on the flow pat-
tern determined experimentally for conical hydrocyclones,
without suspecting that these pattern were different from
those of cylindrical hydrocyclones.

The early work on cylindrical hydrocyclones was frag-
mentary and restricted, in the sense that only the tangential
velocity component was studied, assuming that it was a func-
tion of the radial co-ordinate only and that the functional
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form of the radial velocity could be derived from experimen-
tal evidence. The consequence of this assumption was not
investigated further. As examples, take the cases analysed by
Rietema and Krajenbrink [1], where the radial velocity was
assumed to have the formvr=RVR/r, Rietema [2], who as-
sumed that the radial velocity was constant in the whole flow
field vr=VR or Rietema [5], who solved the same equation
and boundary conditions but now assuming that the radial
velocity was a linear function of the radius,vr=(VR/R)r. In
all three cases, they obtained an analytical equation with very
similar tangential velocity distributions, except for the value
of the radial Reynolds number at which they compared pre-
diction with the experiments of Kelsall. While for Rietema
and Krajenbrink [1], this value wasRe≈3, corresponding to
a turbulent eddy viscosity of the order ofνe≈10−3 m2/s, for
Rietema [2], it wasRe≈10, that is, a turbulent eddy viscos-
ity of νe≈3×10−4 m2/s and for Rietema [5]Re≈30, that is,
with a turbulent eddy viscosity ofνe≈10−4 m2/s). It is im-
portant to point out that Kelsall [4] measured the tangential
and the axial velocity component and derived the radial ve-
locity from these measurements and from continuity. His re-
sults show that the radial velocity is a linear function of the
radial co-ordinate, that is, the way assumed by Rietema [5].

The problem with the models developed by Rietema and
co-workers is that they do not consider explicitly the axial
velocity, which was experimentally known, and assumed ar-
bitrarily a radial velocity. Furthermore, their solutions serve
only to calculate the centrifugal force, but give no clue as
to how the particles are separated and how the particles and
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Fig. 1. Axial symmetric model of a cylindrical hydrocyclone according
to Rietema and co-workers.

fluid are evacuated from the equipment. The conclusion is
that, to solve the dynamic process for cylindrical hydrocy-
clones, it is first necessary to measure the axial and tangen-
tial velocity distributions in these hydrocyclones, and then,
it is essential to solve all three components of Reynolds
equations, together with the continuity equation. That is the
objective of this work.

2. Experimental

2.1. Flow configuration

A flat bottom hydrocyclone 102 mm in diameter and 310.5
mm total in height was built in Perspex. The flow enters the
hydrocyclone tangentially through a rectangular tube with
16×43-mm cross section. The hydrocyclone body is a cylin-
der, 301 mm in length, ending in a short conical section, 9.5
mm in height, forming an angle of 154◦. The overflow oc-
curs through a vortex finder tube 82 mm in length and 32
mm in diameter, while the underflow discharge is through
an apex of 19 mm in diameter.

Water at room temperature (20±0.5◦C) was fed to the
hydrocyclone under controlled flow conditions by a set
of valves. The fluid was pumped from a 0.665 m3 sump
by means of a 4 hp centrifugal pump. Feed pressure and
flow rates were monitored with accurate manometers and
rotameters. Finally, to generate tracer particles for the
Laser-Doppler velocimeter (LDV) measurements, latex
painting particles were added to the fluid.

2.2. Measurements techniques

Velocity and turbulence were measured inside the flat
bottom hydrocyclone with a 300 mW two-component fibre
optic Dantec LDV. The instrument is controlled by the burst
spectrum analysers (BSA) connected to a PC. The equip-
ment is completed by an automatic, computer-controlled,
three-direction traverse system. To minimise the optical

refraction of the laser beams at curved walls, the flat bottom
hydrocyclone was immersed in a water jacket.

Coherent light from an argon-ion laser, with a wavelength
in the range of 457–514.5 nm, was directed to a transmitter
box for frequency shifting to remove the velocities direc-
tion ambiguity and perform colour separation [6]. A Bragg
cell splits the light beam into two beams with a 40-MHz
frequency shifting. These beams pass through a dispersion
prism, which provides two green 514.5-nm, and two blue
488-nm light beams. The shifted and directed beams are led
to the output aperture, where fibre manipulators are used to
focus the beams into the fibre optic cables. A 160-mm focal
length lens probes with a beam intersection angle of 0.236
rad, causes the four beams to intersect. Finally, the collected
back-scattered light is separated into green and blue com-
ponents and is directed onto two photomultipliers.

In order to extract the Doppler frequencies, the Doppler
signals are processed in two BSAs, the BSA master for
measuring the main component of the velocity and the
BSA slave for the other component, which were set to run
in a continuous data collection mode. The experimental
data were transferred to a computer for processing via an
IEEE-488 interface. To measure the velocity and turbulence
in the hydrocyclone, the probe was moved and positioned
using a highly accurate computer-controlled three compo-
nents (x–y–z) traverse system. The BurstWare 2.0 software
package was used to collect all the data, move the traverse,
process the data and present the results.

Velocity data were thus measured on four symmetrical
vertical positions chosen on the curved walls (azimuths
co-ordinatesθ=0, 90, 180, 270◦). The laser beams were
focused on a median verticalr, z half-plan crossing the
cylindrical model, one for each azimuth co-ordinateθ .
Six vertical z-measurements levels were chosen on the
median vertical plane. In correspondence to a determined
z-coordinate,. the first measurement point was placed near
the wall of the cyclone and the last point was chosen in
the proximity of the air core. A uniform measurement axial
step∆z equal to 40 mm and radial steps∆r of 2.7 and
0.675 mm were used. Finally, in all the experimental work
a sample of typically 1000 Doppler bursts was taken for
each measurement point.

Table 1 gives the design and operating conditions of the
flat bottom hydrocyclone used for the velocity measure-
ments.

3. Theory

3.1. Field equations

The complete Reynolds equations, in cylindrical
co-ordinates, for the steady axial symmetric flow, with an
isotropic turbulence represented by an eddy viscosity,νe are:

∂

∂r
(rvr)+ ∂

∂r
(rvz) = 0 (1)



J. Collantes et al. / Chemical Engineering Journal 80 (2000) 257–265 259

Table 1
Design and operating conditions of the flat bottom hydrocyclone used for
the velocity measurements

Hydrocyclone radiusR (cm) 5.1
Vortex radiusRo (cm) 1.6
Apex radiusRu (cm) 0.95
Hydrocyclone lengthL (cm) 31.05
Vortex finder lengthLV (cm) 8.2
Supposed feed inlet lengthLA (cm) 10.25
Hydrocyclone cylindrical length (cm) 30.1
Hydrocyclone conical length (cm) 0.95
Total feed flowrate,Q (l/s) 1.42
Overflow rate,Qr (l/s) 1.27
Underflow rate,Qd (l/s) 0.15
Characteristic parameter,λ 0.106
Pressure,1p (psi) 4
Outer tangential velocityVθR (m/s) 1.3
Reynolds radial number,Re 65
Turbulent eddy viscosity,νe (m2/s) 3.4×10−5
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Integrating the continuity equation (Eq. (1)) yields:

rvr(r, z) = −
∫
∂vz(r, z)

∂z
r dr + k (5)

Fig. 2. Schematic representation of the flat bottom hydrocyclone. (a) Physical model; (b) axial symmetric model.

From the experimental results, it can be safely assumed
that for a cylindrical hydrocyclone, the tangential velocity
is independent of the axial co-ordinate. With this assump-
tion and from Eq. (3) we can deduce that the radial velocity
should also be a function of the radial co-ordinate only.
Now, from Eq. (5) it is clear that the axial velocity gradient
must be independent ofz. The conclusion is that the most
general form of the axial velocityvz (r,z) is (Donaldson
and Sullivan [7]):

vz = f (r)z+ g(r) (6)

Substituting this relationship into Eqs. (1)–(4) yields,
Continuity equation:

1

r

d
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Eliminating the pressure from Eqs. (8) and (10), the
following set of equations is obtained forf(r) andg(r):
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Fig. 3. Comparison of the predicted and experimental dimensionless axial
velocity distribution at several axial levels, wherevz*=vz/VθR andr*=r/R.
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To satisfy the continuity equation, a stream function
ψ(r,z) is defined, such that:

vr = 1

r

∂ψ
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≡ q(r)

r
and

vz = −1

r
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r
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wheref is given in terms ofq(r) by f(r)=−(l/r)dq/dr.

Defining the dimensionless variableη=(r/R)2, whereR is
the radius of the cylinder, and introducing the expressions
(Eq. (12)) into Eq. (11), we obtain forq(η) andg(η):
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Fig. 4. Simulated axial velocity distribution.
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To obtain this equation, that defines the radial and axial
velocity, the viscous terms of equation Eq. (11) were ne-
glected. This is the same assumption made by Bloor and
Ingham [8], which gave good results for the axial velocity
in conical hydrocyclones.

3.2. Boundary conditions

Consider the hydrocyclone divided into two zones. Zone
I corresponds to the upper part of the cylinder with a height
LA=5/4LV, whereLV is the length of the vortex finder tube
and zone II is the rest of the cylinder with heightL−LA,
whereL is the total height of the hydrocyclone (see Fig. 2).

Assuming that the feed enters through the entire man-
tel of zone I, the total volume feed rateQ>0 is given by
Q=−2πRVRLA, from which the boundary condition for
vr (r) in zones I and II are:

vr(R) =
{−Q/(2πRLA) for zone I

0 for zone II
(14)

The fluid is evacuated from the hydrocyclone through the
overflow at the top and through the underflow at the bottom
of the equipment at volume rates ofQo andQu, respectively.
Both of these are positive numbers. If the radius of the over-
flow and underflow are designed byRo, andRu, respectively,
the volume flow at each outlet should be:

Fig. 5. Dimensionless tangential velocity distribution for several values of
the radial Reynolds number, wherevθ *=vθ /VθR andr*=r/R. Experimental
values correspond toz*=0.28.

Fig. 6. Comparison of the predicted and experimental dimensionless
tangential velocity distribution at several axial levels forRe=65, where
vθ *=vθ /VθR and r*=r/R.

Qo =
∫ Ro

0
2π rvz(r, z)dr and

Qu = −
∫ Ru

0
2π rvz(r, z)dr (15)

which can be used as boundary conditions for the axial ve-
locity at the top and at the bottom wall.

Consider that the fluid entering the hydrocyclone has a
known circulationΓ R given by Γ R=2πRVθR, then the
boundary condition for the tangential velocity is:

vθ (R) = ΓR

2πR
(16)
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Fig. 7. Dimensionless tangential velocity distribution of the zones I and II forRe=65, wherevθ *=vθ /VθR and r*=r/R.

A solution that approximates the set of equations
(Eq. (13)) (see Collantes and Concha [9]) is:

q(η) = λ1(1 − exp(λ3η))+ λ2 sin(βη) (17)

whereβ=−(π+arcsin(λ)) with λ=Qu/Q and with appropri-
ate values forλi , i=1, . . . , 3, which, the same as forg(η),
are determined depending on the zone.Then,

vr(r) = 1

r
[λ1(1 − exp(−λ3η))+ λ2 sin(βη)] (18)

vz(r, z)= − 2

R2
[βλ2 cos(βη)+ λ1λ3 exp(−λ3η)]z

+g(r) (19)

Next, the linear differential equation Eq. (9) is solved forvθ
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r
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Using the boundary conditions (Eqs. (14)–(16)) and con-
sidering each zone separately in such a way thatz varies
from 0 to LA in zone I and from 0 toL−LA in zone II, the
following solution was found:

3.2.1. Zone I
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vθ (r) = ΓR
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3.2.2. Zone II
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2)}
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whereN1=βRe/2,N2=βReLA/(2(L−LA)) andRe=−RVR/νe

is the radial Reynolds number. The value forα is selected
in such a way that exp(−α)≈0.
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Fig. 8. Axial velocity distribution at different axial levels.

In both the zonesg has been selected, satisfying Eq. (13)
and considering thatvz(r, 0) of zone I is the same as
vz(r,L−LA) of zone II and thatvz(r,LA) of zone I and
vz(r, 0) of zone II are expressed like exponential functions
vanishing outside of the overflow and underflow radius,
respectively.

In both the zones the pressure distribution can be
calculated from,

p(r, z)

ρ
=
∫
v2
θ

r
dr − v2

r (r)

2
−
(
vr(r)

dg(r)

dr
+ f (r)g(r)

)
z

−1

2

(
vr(r)

df (r)

dr
+ f 2(r)

)
z2 (27)

The error of the approximate solution (Eq. (17)) with
respect to the exact solution of system (Eq. (13)) is given
by the functionsf1j , j=1, 2 at zone I andf2j , j=1, 2 at zone
II. These functions are defined by,

f11(η)=
{
λ2(λ

2
3 + β2)[β cos(βη)+ λ3 sin(βη)] + λ1λ

2
3

}
× exp(−λ3η)− λ2β

3 cos(βη) (28)

f12(η) = {(λ2
3 + β2)exp(−λ3η)− β2} cos(βη) (29)

f21(η)= {λ2(λ
2
3 + β2)[β cos(βη)+ λ3 sin(βη)] + λ1λ

2
3}

× exp(−λ3η)− λ2β
3 cos(βη) (30)
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Fig. 9. Dimensionless radial velocity distribution of the zones I and II, wherevr *=vr /VR and r*=r/R.

Fig. 10. Error of the approximate solution.
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f22(η) = {λ2(λ
2
3 + β2) sin(βη)+ λ1λ

2
3} exp(−λ3η) (31)

In Eqs. (28) and (29)λi , i=1–3 correspond to their values
in zone I and in Eqs. (30) and (31), to their values in zone
II.

4. Results and discussion

Heights of the zones I and II are arbitrary. We selected
LA=5/4LV since, from the experimental results, we have
symmetric velocity distributions at this height. The first set
of experimental velocity values is just below of the zone I/II
interface selected in this way.

The external tangential velocity at the wallVθR was con-
sidered to be the lowest velocity of the experimental tangen-
tial velocity values near the wall at the different axial levels.

Fig. 3 shows a comparison of predicted axial velocity
using equation Eq. (25) and experimental values. Although
the radial dependence ofvz, is fairly represented, the overall
representation of the axial velocity is satisfactory. Fig. 4
shows the shape ofvz, at the overflow, underflow and at the
zone I/II interface.

The variation of the tangential velocity with the Reynolds
number is given in Fig. 5 and it is similar to that obtained
by other research workers. As a result, the value ofRe=65
was selected as appropriate to match experimental results.
Comparison of the experimental tangential velocity and that
simulated with Eq. (26) for several heights in the hydrocy-
clone is given in Fig. 6, with satisfactory results.

Fig. 7 shows the solution for the tangential velocity in the
zones I and II. Moreover, the variation of the axial velocity
at different heights of the hydrocyclone is shown in Fig. 8.
Fig. 9 shows the prediction of the radial velocity in the zones
I and II.

Finally, Fig. 10 shows the error of the approximate solu-
tion Eq. (17). As is seen in the subfigures, it is a very good
approximate solution in zone II, which is the zone of great
importance for particle classification. The modeling of zone
I is given to complete the axial symmetric model, but it only
gives an idea of what might occur in this zone.

5. Conclusions

From the exact solutions of the Reynolds equations, as
given in this work, and from the results of other research
workers that have modelled the cylindrical hydrocyclones
[10], we can say that in a cylindrical hydrocyclone, the ra-
dial velocity depends strongly on the shape of the axial ve-
locity. One can obtain completely different radial velocities
distributions by choosing appropriate axial flows. Neverthe-
less, the shape of the tangential velocity, as a combination
of a free vortex and a rigid motion, is insensible to the form
of these axial and radial velocities. It is important to note
that non of the radial velocities chosen by Rietema [1,2,5]

or Upadrashta [11] can have associated axial velocities that
resemble the experimental ones. All of them require that the
axial flow enters axially into the hydrocyclone.

For the axial velocity to be a consequence of the radial
velocity, it must be a function ofr and at least a linear func-
tion of z. Finally, we can indicate that, in modelling the hy-
drocyclone, the selection from several solutions to the field
equations by comparing the size of the maximum of the tan-
gential velocity with experimental values, is not the proper
way to go. The three, or at least two velocity components
must be compared and specially the axial velocity must be
reasonable.
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